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We study roughness probability distribution functions �PDFs� of the time signal for a critical interface
model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. Starting with
time “windows” of data collection much larger than the system’s internal “loading time” �related to demagne-
tization effects�, we show that the initial Gaussian shape of the PDF evolves into a double-peaked structure as
window width decreases. We advance a plausible physical explanation for such a structure, which is broadly
compatible with the observed numerical data. Connections to experiment are suggested.
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I. INTRODUCTION

The probability distribution functions �PDFs� of critical
fluctuations in assorted systems have been the subject of
much recent interest, mainly stemming from the realization
that they exhibit a remarkable degree of universality �1–4�.

The roughness w2 of a fluctuating interface with N ele-
ments is the position-averaged square width of the interface
height above an arbitrary reference level �4,5�:

w2 = N−1�
i=1

N

�hi − h̄�2, �1�

where h̄ is the average interface height. The finite-size scal-
ing of the first moment of the roughness PDF gives the
roughness exponent � �6�:

�w2�L�� � L2�, �2�

where angular brackets stand for averages over the ensemble
of allowed interface configurations, and L is some finite lin-
ear dimension characterizing the system in study. The width
PDF P�w2� for correlated systems at criticality may be put
into a scaling form �3–5,7�,

��z� = �w2�P�w2�, z 	 w2/�w2� , �3�

i.e., the scaling function ��z� is expected to depend only on
the scaled width w2 / �w2�. In other words, the size depen-
dence must appear exclusively through the average width
�w2�. Comparison of experimental or simulational data to
specific analytical forms, whose suitability to the description
of the case at hand has been anticipated by physical argu-
ments, usually results in good agreement. Thus the PDF of
voltage fluctuations in semiconductor films was fitted very
well by that of perfect Gaussian 1/ f noise �3�; simulational
data for the single-step model of deposition-evaporation, by
the PDF of a random-walk process �7� �the latter corresponds
to perfect Gaussian 1/ f2 noise, or Wiener process �4��. Fur-
ther progress was made possible via the analytical evaluation
of roughness PDFs for generalized Gaussian noise with in-
dependent Fourier modes �i.e., 1 / f� noise with general,

continuously-varying �� �4�. Consideration of the scaling
properties of height-height correlation functions and their
Fourier transforms implies �5� that

� = d + 2� , �4�

where d is the interface dimensionality and � is defined in
Eq. �2�. Equation �4� is valid provided that ��0 �4�, i.e., �
�1 in the present case where the “interface” is a time series
�see below�.

In previous work �8� we applied the ideas outlined above,
to investigate the interface roughness PDFs of a single-
interface model which has been used in the description of
Barkhausen “noise” �BN� �9–12�. This is an intermittent phe-
nomenon which reflects the dynamics of domain-wall motion
in the central part of the hysteresis cycle in ferromagnetic
materials �see Ref. �13� for an up-to-date review�. By ramp-
ing an externally applied magnetic field, one causes sudden
turnings �avalanches� of groups of spins. The consequent
changes in magnetic flux induce a time-dependent electro-
motive force V�t� on a coil wrapped around the sample.
Analysis of V�t�, assisted by suitable theoretical modeling,
provides insight into both the domain structure itself and its
dynamical behavior. It has been proposed that BN is an il-
lustration of “self-organized criticality” �9,14–16�, in the
sense that a broad distribution of scales �i.e., avalanche sizes�
is found within a wide range of variation of the external
parameter, namely the applied magnetic field, without any
fine-tuning. The interface model studied here �9� incorpo-
rates a self-regulating mechanism, in the form of a demag-
netization factor.

We have shown �8� that the demagnetizing term is irrel-
evant as regards interface roughness distributions, with the
conclusion that in this respect the behavior of self-regulated
systems is in the same universality class as that of the
quenched Edwards-Wilkinson model �17–20�, at criticality
�i.e., at the interface depinning transition�.

However, when one considers the time series of intermit-
tent events which characterizes BN, it is known that the de-
magnetizing term is responsible for the introduction of short-
time negative correlations in the model �such correlations are
observed in experiments as well� �9�. The question then
arises of whether a corresponding signature of self-regulation
will be present when the roughness distribution of the time*Electronic address: sldq@if.ufrj.br
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sequence of BN events is examined. Since the traditional
data acquisition method in the study of BN is exactly via the
time series of induced voltages, an investigation along these
lines may establish useful connections between observational
data and the basic physical mechanisms underlying BN.

II. MODEL INGREDIENTS AND DYNAMICS

We use the single-interface model introduced in Ref. �9�
for the description of BN. In line with experimental proce-
dure, the external field H acting on the sample is assumed to
increase linearly in time, therefore its value is a measure of
“time.” We consider the adiabatic limit of a very slow driv-
ing rate, thus avalanches are considered to be instantaneous
�occurring at a fixed value of the external field�. In this sim-
plified version, a plot of V�t� against t consists of a series of
spikes of varying sizes, placed at nonuniform intervals. Gen-
eralizations for a finite driving rate may be devised
�11,21,22�, but will not concern us here.

Simulations are performed on an Lx�Ly �� geometry,
with the interface motion set along the infinite direction.
Since we are interested in fluctuations of the Barkhausen
signal in time, we keep geometric aspects at the simplest
level, i.e., Ly =1 �system dimensionality d=2, interface di-
mensionality d�=1�. Periodic boundary conditions are im-
posed at x=0,L.

The interface �180-degree domain wall separating spins
parallel to the external field from those antiparallel to it� is
composed by L discrete elements whose x coordinates are
xi= i, i=1, . . . ,L, and whose �variable� heights above an ar-
bitrary reference level are hi. The simulation starts with a flat
wall: hi=0 for all i.

Each element i of the interface experiences a force given
by

f i = u�xi,hi� + k�hi+1 + hi−1 − 2hi� + He, �5�

where

He = H − 	M . �6�

The first term on the right-hand side �RHS� of Eq. �5� repre-
sents quenched disorder, and is drawn from a Gaussian dis-
tribution of zero mean and width R; the intensity of surface
tension is set by k, and the effective field He is the sum of a
time-varying, spatially uniform, external field H and a de-
magnetizing field which is taken to be proportional to M
= �1/L��i=1

L hi, the magnetization �per site� of the previously
flipped spins for a lattice of transverse width L. Here we use
R=5.0, k=1, 	=0.005, values for which fairly broad distri-
butions of avalanche sizes are obtained �8,10–12�.

The dynamics goes as follows. For fixed H, starting from
zero, the sites are examined sequentially; at those for which
f i�0, hi is increased by one unit, with M being updated
accordingly; the corresponding new value of u is drawn. The
whole interface is swept as many times as necessary, until
only sites with f i
0 are left, which marks the end of an
avalanche. The external field is then increased until f i=0 for
at least one site. This is the threshold of a new avalanche,
which is triggered by the update of the site�s� with f i=0, and
so on.

The effect of the demagnetizing term on the effective field
He is that at first it rises linearly with the applied field H, and
then, upon further increase in H, saturates �apart from small
fluctuations� at a value rather close to the critical external
field for the corresponding model without demagnetization
�9,10�.

III. TIME SERIES: CORRELATIONS AND ROUGHNESS

As explained above, owing to the assumed linear increase
of applied field with time �in analogy with experimental set-
ups�, we shall express time in units of H as given in Eqs. �5�
and �6�. We have generated time series of BN, with
O�104–105� events. Steady state, i.e., the stabilization of He

of Eq. �6� against external field H, occurs after some 200
events, for the range of parameters used here. Though we
used only steady-state data, it was noted that inclusion of
those from the transient does not appreciably distort any of
the quantities studied.

In experiment, the integrated signal 
�tV�t�dt is propor-
tional to the magnetization change �number of upturned
spins� during the interval �t. In the adiabatic approximation
used here, a boxlike shape is implicitly assumed for each
avalanche �i.e., details of the internal structure of each peak,
as it develops in time, are ignored, on acount of its duration
being very short�, thus the instantaneous signal intensity
�spike height� is proportional to the corresponding avalanche
size.

We sample the fluctuations of the signal along successive
“windows” of equal time duration W, each containing many
spikes. Each window is divided into equally-spaced bins of
size �; the signal intensity associated to each bin is the sum
of the sizes of all avalanches which occurred within that bin.
The roughness w2 of the signal on a given window starting,
say, at t=0, is given by

w2 =
1

W/� �
i=1

W/�

�Vi − V̄�2, Vi = �
t���i−1��,i��

V�t� , �7�

where V̄ is an average of V�t� over the whole window span
W.

As the signal is intermittent, there are significant periods
�waiting times, henceforth referred to as WT� of no activity
at all. Such quiet intervals must be properly accounted for in
the statistics of fluctuations, hence care must be taken when
setting up the bin size �.

We have examined WT distributions, for varying lattice
widths L=200,400,800. In Fig. 1 �lower curve� we display a
double-logarithmic plot of the probability of occurrence of
assorted WTs for L=400, against WT, sampled over 8
�106 events. The distribution is generally rather flat, apart
from �i� a sharp cutoff at the high end �related to the finite
cutoff in the avalanche size probability distribution, see the
discussion of loading times below�, and �ii� a number of
peaks concentrated in a somewhat narrow region correspond-
ing to 10−5WT10−4. The latter are associated to very
frequent and small, spatially localized �i.e., noncritical�
events involving typically N=1–10 sites �11�. This is easy to
see by recalling from Eqs. �5� and �6� that, since the demag-
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netization term keeps He approximately constant, a small
avalanche with N spins overturned decreases the internal
field by 	N /L, thus requiring approximately the same in-
crease in external field in order to bring the system back to
criticality. We have checked that the peaks move consistently
with this argument, i.e., their horizontal position is shifted
leftward by a factor of log10 2 for each doubling of L.

Upon consideration of integrated WT distributions �upper
curve in Fig. 1�, we decided to set the bin size �=10−5 �for
L=400, the system size for which most of our calculations
are done, see below�. With such a choice, WTs shorter than �
occur with less than 1% frequency. This ensures both that
inactive periods are not wrongly obscured by bursts of activ-
ity, and that consecutive avalanches are rather unlikely to be
lumped together.

At this point, a comment must be made on the connection
of the above results with previous investigations of WT dis-
tributions in BN. In Ref. �23� it was predicted, from a fractal
analysis of the ABBM �24� model which describes domain-
wall motion via a Langevin equation, that P�WT�
��WT�−�2−c�, where c is proportional to the external field
driving rate. Experimental data in SiFe samples are consis-
tent with this �23�. The present case of adiabatic driving
would then correspond to c→0. However, it is crucial in the
analysis of Ref. �23� that the BN pulse durations be finite
�even though they shorten accordingly in the c→0 limit�.
Indeed, the result just quoted relies on considering the prop-
erties of complementary sets, both with nonzero fractal di-
mension �namely the time intervals during which there is
domain-wall motion, versus those of no activity, i.e., WTs�.
The approximation used here, of considering BN pulses as
having exactly zero duration, destroys the connection of our
data with the conceptual framework in which the power-law
dependence P�WT���WT�−�2−c� was found. Though in this
sense the flat WT distribution found here is most likely an
artifact of the model, the conclusions extracted from the dis-
tribution with respect to the choice of � remain valid.

We now turn to the choice of window width W. Recall
that real-space properties, e.g., interface roughness, of the
systems under study benefit from divergence of the system’s
natural length scale, as it self-tunes its behavior to lie close
to a second-order �depinning� transition �8�. For such quan-

tities, universality ideas apply, so one expects finite-lattice
effects to be present only as an overall scale factor, e.g., �w2�
in Eq. �3� �3–5,7�. However, in the study of time series for
the same systems, one must bear in mind that a finite time
scale �L �“loading time”� is introduced via the demagnetiza-
tion term �9�. This is illustrated in Fig. 2 �similar plots, ex-
hibiting both simulational and experimental results, can be
found in Ref. �9�� where normalized two-time correlations
�V�t�V�t+��� / �V�t��2−1 �averaged over t� are shown. There-
fore, different regimes will be found, depending on the value
of x	W /�L. The limit x�1 is expected to reproduce the
white noise characteristic of uncorrelated fluctuations, for
which the roughness distribution is a pure Gaussian. On the
other hand, non-trivial effects may arise for x�1.

Before going further, it must be remarked that �L in fact
decreases for increasing L. This can be understood by recall-
ing that �i� the probability distribution for avalanche size s
goes roughly as P�s��s−a exp�−s /s0� �9–12�; �ii� the cutoff
s0 scales approximately as s0�L0.8 in the present case of a
one-dimensional interface �10�. Thus the maximum waiting
time �M will vary as �M =	s0 /L�L−0.2. For L=400, we find
s0�4�104 �12�, which explains both the sharp drop in the
WT distribution at WT�0.5 in Fig. 1, and the complete
vanishing of correlations at ��0.5 in Fig. 2.

In BN studies the connection between lattice-size-
dependent quantities in simulations, and their experimental
counterparts, becomes especially clear when one considers
the L-dependent cutoff in the power-law avalanche size dis-
tribution, and its relationship to the maximum domain size in
magnetic samples �10�. In the present case it should be
stressed that finite loading times are measured in experiment,
under suitable conditions �9�. Thus, we assume that the load-
ing times found here are not simply a finite-size artifact of
simulations, bound to vanish in the thermodynamic limit
characteristic of real systems. Instead, although we are not in
a position to propose quantitative comparisons, they must
correspond to the experimentally observed ones.

IV. RESULTS

By generating many realizations of the roughness w2 de-
fined in Eq. �7� for given values of the physical parameters,

FIG. 1. �Color online� Double-logarithmic plot of probability
distribution, P�WT�, of waiting times �lower curve�, and accumu-
lated distribution, Pacc�WT�	
0

WTP�t�dt �upper curve�. L=400.

FIG. 2. �Color online� Normalized two-time correlations �aver-
aged over t� �V�t�V�t+��� / �V�t��2−1 for system with L=400.
Dashed line is fit of data to single-exponential form, from which
�L=0.14�1�.

ROUGHNESS OF TIME SERIES IN A CRITICAL… PHYSICAL REVIEW E 72, 066104 �2005�

066104-3



we have obtained the corresponding roughness PDFs. The
shapes of roughness PDFs found here do not usually con-
form to the generalized Gaussian �1/ f�� distributions intro-
duced in Ref. �4�, although they display certain similarities to
the pure Gaussian limit, which corresponds to �=1/2 in the
scheme of Ref. �4�. We have found it convenient to adhere to
conventions used in that Reference and related work, namely
expressing the PDFs in a scaling form, see Eq. �3�.

We first examine the limit x�1. Similarly to 1/ f� PDFs
with ��1 �4�, our results in this limit approach a �-function
shape when expressed in terms of z of Eq. �3�. The solution,
pointed out in Refs. �3,4�, is to use scaling by the variance,
instead of by the average, i.e., switch to the variable

y =
w2 − �w2�

��w2
2� − �w2�2

. �8�

The corresponding scaling function will be denoted by ��y�.
In Fig. 3 we show results for window width W=100, in

terms of y of Eq. �8�. While in �a� the demagnetizing factor is
	=0.005 �thus �L�0.14 from Fig. 2�, the data in �b� corre-
spond to simulations of the same system, with 	=0. As ex-
plained in Ref. �8�, in this case the system is kept close to
criticality by the following procedure. We first determined
the approximate critical value He

c of the internal field He of
Eq. �6�, by starting a simulation with 	�0 and waiting for
He to stabilize. At that point, we set 	=0 and repeatedly
swept H in the interval ��He

c ,He
c�, �1, according to the

procedure delineated in Sec. II. We have used �=0.9 for the
data displayed in Fig. 3�b�. With He

c�5.4 for the disorder
and elasticity parameters used here, data corresponding to a
window of “width” W=100 in this case was in fact given by
the collation of data from �W / �1−��He

c=185 consecutive
field sweeps as just described. Note that, within a given field
sweep, many noncritical events are thus sampled �which
would by themselves give rise to a nonuniversal PDF, see
below the discussion for narrow windows�. However, owing

to the central limit theorem, the result of the collation of
many independent segments should yield an overall behavior
which is essentially Gaussian.

One can see that in both cases, a single Gaussian centered
at y�0 and with variance �1 gives a good fit to data, con-
firming our expectation that demagnetization-induced corre-
lations would be essentially washed away for W��L. It is
worth mentioning, however, that the unscaled variables tell a
slightly different story: for the data of Fig. 3�a� one has
�w2�±�= �127±6��103, while in �b� �w2�±�= �6.3±2.2�
�103. Clearly, our data would approach a �-function shape
if plotted in terms of z defined in Eq. �3�.

Considering now narrower windows, and keeping the de-
magnetizing factor 	=0.005, we show data for W=10.0, 2.5,
and 1.0 in Fig. 4, where we have reverted to plotting our
results in terms of the variable z defined in Eq. �3�. This is
because it was noticed that, against diminishing x, the scaled
roughness PDFs followed a trend away from the �-function
shape which was the motivation for using the variable y of
Eq. �8�. In order to produce an accurate picture of deviations
from the Gaussian limit, we have generated a much larger
number of samples �O�105�� than for W=100.

Before analyzing the shapes exhibited in Fig. 4, it is in-
structive to check how the demagnetization term influences
the roughness PDFs in the narrow-window limit. In Fig. 5
the scaled distributions for W=10 are shown, both with and
without demagnetization. The shapes of PDFs are clearly
rather distinct from each other, highlighting the relevance of
demagnetization effects in this limit. For 	=0 the distribu-
tion peaks at z�0.15 and decays very slowly afterwards. As
mentioned above in connection with the data of Fig. 3�b�,
this reflects the nonuniversal statistics of noncritical events
which our calculational method for 	=0 inevitably includes.
The difference relative to that case is that for W=10, each
roughness sample is the collation of only �19 consecutive
field sweeps. The corresponding results show that, in contrast
to W=100, here one is outside the range of applicability of
the central limit theorem.

From now on we shall only deal with 	�0. Even though
W=10.0 corresponds to x�70, it is clear from Fig. 4 that a
secondary peak is evolving, i.e., a significant distinction is
emerging with respect to the simple Gaussian picture found

FIG. 3. �Color online� Scaled roughness distributions ��y� of
time series, for y of Eq. �8�. L=400; window width W=100. �a�
Demagnetizing factor 	=0.005 ��L�0.14�, 6�103 samples.
Dashed line is Gaussian fit to data with mean at y=0.04�1�, width
�=0.96�1�. �b� Demagnetizing factor 	=0 �see text�, 2.1�104

samples. Dashed line is Gaussian fit to data, with mean at
y=−0.07�1�, width �=0.98�1�.

FIG. 4. �Color online� Scaled roughness distributions ��z� of
time series, for z of Eq. �3�. L=400. Window width W=10 �tri-
angles, 1.2�105 samples�, 2.5 �squares, 1.2�105 samples�, and 1.0
�crosses, 5.7�105 samples�.
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for larger W. Data for W=5.0 �not shown� are virtually iden-
tical to those for W=10.0. While a secondary peak still
shows up for W=2.5, data for W=1.0 display only a single
maximum �however, these latter clearly differ from a pure
Gaussian�.

We then attempted to fit the data in Fig. 4 to analytical
forms. The W=10.0 results strongly suggest a double-
Gaussian ansatz, as

��z� = bG1�z� + �1 − b�G2�z� , �9�

where Gi is a Gaussian centered at ai with variance �i
2. As W

grows, one would expect b→1, a1→1 in Eq. �9�. Data for
W=10.0 are well fitted by b=0.924�2�, a1=1.03�1�, a2

=0.51�1�, as seen in Fig. 6. The �2 per degree of freedom
��DOF

2 � is 1.5�10−3, indicating that the form Eq. �9� indeed
provides a satisfactory description of simulational results in
this case.

We have found that a similar fit, albeit of somewhat re-
duced quality ��DOF

2 =3�10−3, with b=0.955�5�, a1

=1.02�1�, a2=0.06�3�� is feasible for the W=2.5 data as
well. Turning to W=1.0, the double-Gaussian ansatz worked
surprisingly well, producing �DOF

2 =6�10−4, with b
=0.53�5�, a1=1.24�4�, a2=0.77�1� �i.e., the two curves are

roughly symmetric about z=1, with approximately equal
weights�.

Given that a double-peak structure is far from obvious for
the W=1.0 data, alternative forms must be considered which
might also provide a suitable fit to data in this limit. We
investigated the family of roughness PDFs for 1 / f� noise
�4,5�, keeping in mind that window boundary conditions
�WBC� are the appropriate ones in this case �3–5,8,25�. Such
PDFs are usually available in closed form �25�. However,
close to �=1 it is more time-efficient to evaluate PDFs nu-
merically via the usual procedure of first generating a very
long sequence of Gaussian white noise, Fourier-transforming
that sequence, multiplying the Fourier components by f−�/2

and then inverting the Fourier transform �3,4�. The resulting
sequence is pure 1/ f� noise, which is then chopped into win-
dows for analysis of the corresponding roughness PDF.

The best fit of the 1/ f� family to our data was achieved
for �=1, that is, the Fisher-Tippet-Gumbel �FTG� statistics
of extremes �3�. Even so, significant discrepancies remain.
The overall picture is illustrated in Fig. 7, where we have
switched again to the variable y of Eq. �8� because the FTG
curve is better visualized in this way �3,4�. One sees that,
even though the double-Gaussian curve gives an excellent fit
in the central area of the plot where ��y��0.1, it fails away
from there, especially at the lower end. As to the FTG curve,
while it follows the data closely, it never actually matches
them.

V. DISCUSSION AND CONCLUSIONS

The usual approach to the frequency domain in BN litera-
ture is via the study of power spectra �13,26�. It has been
found �11� that, in the adiabatic limit of the interface model
under consideration here, the power spectrum behaves ap-
proximately as 1/ f2 within an intermediate range of frequen-
cies. One might construe this as indicating that the pure 1/ f2

noise model of a Wiener process �4,7� applies in this case.
However, the numerically-obtained full roughness PDF,
which contains much more information than a section of the
power spectrum, tells a more nuanced story. Indeed, in gen-

FIG. 5. �Color online� Scaled roughness distributions ��z� of
time series, for z of Eq. �3�, with and without demagnetization. L
=400; window width W=10. Triangles, 	=0.005, 1.2�105

samples; circles, 	=0, 2.1�105 samples.

FIG. 6. �Color online� Scaled roughness distribution ��z� of
time series, for z of Eq. �3�. L=400. Window width W=10. Tri-
angles are simulational data. Thick line is fit to Eq. �9�, with b
=0.924�2�, a1=1.03�1�, and a2=0.51�1�. �DOF

2 =1.5�10−3.

FIG. 7. �Color online� Crosses: scaled roughness distribution
��y� of time series, for y of Eq. �8�. L=400; window width W=1.
Dashed line is double-Gaussian fit to data �Eq. �9��. Full line is
Fisher-Tippet-Gumbel distribution with window boundary condi-
tions. Vertical axis is linear in �a�, logarithmic in �b�.
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eral it does not follow a shape close to that of 1 / f� curves,
except for narrow windows. Even there, the closest fit within
that family is for ��1.

The question then arises of whether the generalized
Gaussian approximation underlying 1/ f� noise models, in
which the Fourier modes are considered as uncorrelated �4�,
is suitable for the description of BN time series. Our results,
when considered in their evolution as window width varies,
appear more consistent with the idea that the similarity of
our PDFs to that of 1 / f noise, found at the narrow-window
limit, is fortuitous. We recall that, even in studies of real-
space interface roughness, it is known that the independent-
mode approximation gives rise to small but systematic dis-
crepancies against experimental data, which can be traced
back to higher cumulants of the correlation functions �5�.
Furthermore, even more severe discrepancies have been
found when boundary conditions other than periodic �e.g.,
window, as is the case here� are considered �8,27�.

Turning now to the double-Gaussian picture, admittedly
phenomenological in its inspiration, nonetheless it gives a
description which is both numerically closer to actual data,
and spans a broad range of window widths.

The physical origins of the double-peak structure may be
traced back to the demagnetization term, and the consequent
negative correlations illustrated in Fig. 2. A window of width
W contains at least W /�M segments whose internal roughness
profiles are uncorrelated to each other. On the other hand,
within each such segment, negative correlations are signifi-
cant at least to some extent, thus preventing fluctuations
from becoming very large. This latter effect gives rise to the
secondary peaks at y
0, or equivalently, z
1. With �L
�0.14, �M �0.5 for the L=400 systems which have been the
focus of our study, one has for W=1 that both inter- and
intrasegment fluctuations have similar weights, hence the b
�0.5 result for the double-Gaussian fit in that case. For
W /�M �1 the dominant picture is one of many uncorrelated
“blobs” of length ��M, yielding the effective single-
Gaussian limit observed.

The double-Gaussian picture displays features which are
not fully understood at present. Figure 8 exhibits the varia-
tion of parameters b, a1, and a2 of Eq. �9� against W for not
very large window widths �in addition to W=1.0, 2.5, 5.0,
and 10.0 we ran simulations at W=0.5 and 1.5�. While b
varies approximately as expected within this theoretical
framework �albeit with small nonmonotonicities�, and a1 fol-
lows a rather monotonic trend, the behavior of a2 is intrigu-
ing, showing an apparent trend reversal. So far we have not
able to provide an explanation for this.

An alternative explanation for the observed behavior at
W�1 may be proposed, following a line similar to that ad-
vanced for the evolution of 	=0 data with increasing W �see
Fig. 5 and the respective discussion�. In this scenario, the
W�1 PDF shapes would be nonuniversal �i.e., neither 1 / f�

nor double-Gaussian�. For larger W10 the central limit
theorem would imply that, for the superposition of many
�almost� decorrelated non-universal profiles, effective Gauss-
ian structures should emerge. In this view, the peak at z
1
would again be ascribed to segments within which negative
correlations are felt, with the peak at larger z corresponding
to intersegment profiles.

Whatever the explanation of the behavior of roughness
PDFs for W�1, the extent of window widths for which an
effectively double-peaked structure shows up is considerably
larger than, say, �L. Thus, a fairly straightforward way to
detect the presence of demagnetization effects in experimen-
tal setups would be via the analysis of roughness PDFs of the
induced signal V�t�. Considering, e.g., the conditions for the
Perminvar samples described in Ref. �9�, where the average
spacing between peaks is 13 msec and �M �200 msec,
analysis of windows of width �2 sec should produce a well-
defined double-peaked structure similar to that of Fig. 6.
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